Создан первый серийный биопринтер. Создан первый серийный биопринтер История развития биопечати

«Распечатают ли нам, наконец, новые органы?» - этот странный вопрос в наши дни, оказывается, уже витает в воздухе. Так вот, сообщаем: распечатают. Но не сейчас. Не так скоро. Хотя в России уже разрабатываются и биопринтеры, на которых в будущем станут печатать «запчасти» для человека, и биобумага для таких устройств.

Одна из таких отечественных «точек роста» - лаборатория тканевой инженерии Института теоретической и экспериментальной биофизики (ИТЭБ РАН), расположенного в подмосковном наукограде Пущино.

«Кусочки сахара» и челюсть из них

Что же значит термин «тканевая инженерия» и откуда он взялся?

Прежде чем делать с нуля новые почки и сердце (чего мы пока не умеем), медицине предстояло освоить две задачи попроще. Во-первых, научиться воспроизводить твердые ткани – кости. И во-вторых, научиться воссоздавать большие куски тканей для «залатывания» тяжелых травм.

С этим к настоящему моменту дело обстоит довольно неплохо. В обоих случаях применяются «биодеградируемые материалы». Они не остаются в организме навсегда, а составляют основу, заселяя которую, стволовые клетки человека постепенно восстанавливают ткань. При этом сама «заплатка» попросту рассасывается.

Первым делом корреспондентам «МИР 24» показали нечто, похожее на «кусочки сахара» в колбах. Как оказалось, это – запасы материалов или препаратов, из которых формируется заменитель кости у человека. «Белые вещества» могут быть как из натуральной кости, так и из синтетических полимеров, таких как полилактиды и полигликолиды.

Напечатанная под управлением компьютера на 3D–принтере костная ткань по своей структуре может как полностью воссоздавать утраченный фрагмент кости, так и создавать другие конструкции, подходящие для обеспечения процесса ее восстановления.

«Возможности 3D-биопринтинга позволили, например, заместить удаленную из-за раковой опухоли нижнюю челюсть человека, - рассказывает руководитель лаборатории роста клеток и тканей Ирина Селезнева. – Прежде чем ее удалить, сняли томограмму и по компьютерной модели восстановили и напечатали каркас органа, который потом заселили собственными стволовыми клетками пациента и заместили утрату».

С воспроизводством мягких тканей дело обстоит сложнее. Однако за последние десять лет ученые существенно продвинулись и в этом направлении.

Из чего делается «биобумага»

Суть метода «биопечати» в данном случае в том, что будущий орган формируется из двух основных компонентов: живых клеток и «матрикса», моделирующего условия межклеточной среды и соединительной ткани.

Источником клеток могут стать как донорские, так и собственные стволовые клетки человека, выделенные, например, из жира или костного мозга. Они могут быть превращены в различные типы клеток и тканей под воздействием биологически активных веществ.

Руководитель лаборатории тканевой инженерии профессор Владимир Акатов и Ирина Селезнева говорят о создании новых биоактивных материалов, способных активировать собственные регенераторные возможности организма без привнесенных извне клеток. Главное - создать условия для миграции и роста собственных стволовых клеток человека и формирования ими тканей.

«Биобумагой для биопринтера» ученые называют искусственную среду, в которой смогут расти живые клетки будущих органов. Она образуется из белков, полисахаридов и других биоактивных веществ и представляет собой гидрогель, который можно заправлять в биопринтер вместе с клетками, либо тонкую пленку, на которой можно печатать клетки.

«Мы исследуем эти гели при взаимодействии с клетками, - поясняет старший научный сотрудник Галина Давыдова. - Смотрим, как составить композицию, чтобы после полимеризации гидрогель обеспечивал механические характеристики конструкции и условия для жизни в них леток».

Галина Анатольевна набирает в один шприц белок коллаген, а в другую – полисахарид (метилцеллюлозу). И капает из обоих шприцов в чашечку Петри. Происходит реакция, в результате которой в чашечке образуется бесформенная «пенка» или пленка. Бумагу она напоминает весьма относительно – впрочем, что-то вроде кусочка рельефных обоев или линкруста. Это гель «полимеризуется».

Вот прототип той «подложки», куда станут слой за слоем наращивать клетки будущих органов. Она сможет образовывать трехмерные объемные структуры этих органов, а затем, сыграв свою роль, рассосется в организме. Пока ничего сногсшибательного с виду не напоминает.

Бумага нужна всем печатникам

Однако у пущинцев довольно солидные партнеры. «В нашей стране есть два лидера биопринтинга, несколько различающихся по своим подходам и аппаратному обеспечению, - рассказала Ирина Ивановна Селезнева. – Один из них – Владимир Миронов, глава 3D Bioprinting Solutions и профессор в Университете штата Вирджиния».

Технология Миронова похожа на «струйный принтер», когда под управлением компьютера струи из разных шприцов смешиваются, формируя на подложке ткань. «В качестве чернил используются клеточные сфероиды, агрегаты клеток, которые обладают способностью сливаться между собой, образуя те же капилляры и другие структуры, ткани», - отметила Селезнева.

Другой лидер - Борис Чичков, профессор Ганноверского университета им. Лейбница и заведующий лабораторией лазерной наноинженерии в Институте проблем лазерных и информационных технологий РАН в Троицке.

«Условно назовем это лазерный биопринтинг – рассказала Селезнева. - Очень короткие, фемтосекундные импульсы лазера позволяют сшивать материал шаг за шагом, задавая под управлением компьютера нужную форму матрикса с точностью до нанометров. Эти же лазерные импульсы способны переносить с одной поверхности на другую даже отдельные клетки, которые при этом сохраняют свою жизнеспособность ».

Технологии биопечати различаются, но без матрикса, обеспечивающего адекватное микроокружение для жизни клеток и формирования тканей в обоих случаях не обойтись. В Пущино разрабатывают «бумагу», как для струйного, так и для лазерного принтера, адаптируя характеристики гидрогелей к особенностям технологии биопечати.

В принципе, пользуясь методами биопринтинга в отдаленном будущем, возможно, удастся собирать орган, как пазл, из отдельных клеток и матрикса. А в ближайшем будущем напечатанные таким образом кусочки тканей станут новой моделью для тестирования новых лекарств.

Сверхзадача, которую ставят ученые на будущее – научиться наращивать ткани прямо на поврежденном месте. Тогда вместо громоздкого принтера будет использоваться инструмент вроде пистолета, из которого на тело пациента станут наносить элементы гидрогеля с клетками, которые прямо на человеке будут полимеризоваться, формируя новую ткань.

Они искусственным способом создают живую ткань, накладывая живые клетки слой за слоем. В настоящее время все биопринтеры являются экспериментальными, тем не менее, в будущем они смогут произвести революцию в медицине.

Биопринтеры могут иметь разные конфигурации, но принцип работы один: они выводят клетки из печатающей головки, которая движется влево-вправо, вперед-назад, вверх- вниз, чтобы поместить клетки куда требуется. Таким образом, за несколько часов можно получить органический объект, который состоит из огромного количества очень тонких слоев.

В дополнение к выводу клеток, большинство биопринтеров также выводят растворимый гель для поддержки и защиты клеток во время печати.

Пионеры биопечати

Несколько экспериментальных биопринтеров уже было создано. Например, в 2002 году профессор Макото Накамура увидел, что капли чернил в стандартном струйном принтере имеют примерно такой же размер, как клетки человека. После этого он адаптировал технологии и в 2008 году создал рабочую модель биопринтера, которая осуществляет печать биотрубочек, похожих на кровеносные сосуды. Профессор Накамура надеется, что со временем можно будет буквально распечатывать внутренние органы, готовые к трансплантации.

Другим пионером в области биопечати является компания Organovo, которая была создана исследовательской группой под руководством профессора Габора Форгача (Gabor Forgacs) из университета Миссури. С марта 2008 года Organovo задалась целью создать технологии биопечати функционирующих кровеносных сосудов и сердечной ткани с помощью клеток, полученных из тканей цыпленка. Эта работа опирается на прототип биопринтера с тремя печатающими головками. Первые две головки выводят кардио- и эндотелиальные клетки, в то время как третья выделяет коллагеновую основу – так называемую “био-бумагу” – для поддержки клеток во время печати.

С 2008 года Organovo работала с компанией Invetech для создания коммерческих биопринтеров под названием NovoGen MMX. В этот биопринтер загружаются биочернильные сфероиды, наполненные десятками тысяч клеток. При печати NovoGen создает первый слой на био-бумаге, изготовленной из коллагена, желатина или других гидрогелей. Затем в него вводятся (впрыскиваются) биочернильные сфероиды. Слой добавляется за слоем до создания конечного объекта.

Удивительно, но природа берет свое, и биочернильные сфероиды медленно сливаются. После этого биобумага растворяется или удаляется другим способом, и в результате получается ткань или орган, напечатанный с помощью биопринтера.

Как продемонстрировала компания Organovo, при использовании процесса биопечати не обязательно печатать орган во всех деталях. Достаточно правильно расположить соответствующие клетки в ряды, а природа сама завершит работу. Этот процесс красноречиво свидетельствует о том, что клетки, содержащиеся в биочернильных сфероидах способны перестраиваться после печати. Например, экспериментальные сосуды были напечатаны с помощью биопринтера с использованием биочернильных сфероидов и состояли из совокупности тканей эндотелия, гладких мышц и фибробластов. После того, как они были выстроены (уложены в слои) головкой биопринтера, эндотелиальные клетки мигрировали внутрь созданных кровеносных сосудов, клетки гладкой мускулатуры двигались в середину, а фибробласты мигрировали наружу без дополнительного вмешательства.

Клетки более сложных тканей и органов, например, капилляров и других внутренних структур, после печати на биопринтере также самостоятельно принимают естественное положение. Этот процесс может показаться почти волшебным. Однако, как объясняет профессор Габор Форгач (Gabor Forgacs), он ничем не отличается от процесса, который происходит в клетках эмбриона, которые “знают”, как правильно расположиться и сформировать сложные органы. Природа развила эту удивительную способность за миллионы лет. Соответствующие типы клеток, оказавшись в нужных местах, каким-то образом знают, что им делать.

В декабре 2010 года компания Organovo создала при помощи биопринтера первые кровеносные сосуды с использованием клеток, полученных от одного донора. Компания также успешно имплантировала нервы, созданные при помощи биопринтера, крысам, а эксперименты по пересадке созданных таким методом тканей человеку запланированы на 2015 год. Тем не менее, ожидается, что первое коммерческое применение биопринтеров будет заключаться в производстве простых человеческих структурных тканей для токсикологических испытаний. Это позволит ученым тестировать лекарства на моделях печени и других органах, созданных на биопринтере, тем самым снижая потребность в экспериментах на животных.

Со временем, как только испытания на человеке будут завершены, Organovo надеется, что биопринтеры будут использовать для получения трансплантатов кровеносных сосудов и применяться в операциях по шунтированию сердца. Намерения компании включают масштабную разработку технологий создания тканей и органов “на заказ”. Для реализации этой задачи исследователи в настоящее время работают над созданием крошечных механических устройств, которые могут осуществлять искусственную тренировку и, следовательно, укреплять мышечные ткани, созданные на биопринтере, до имплантирования в тело пациента.

Organovo ожидает, что первым искусственно созданным человеческим органом станет почка, так как при трансплантации эти органы наиболее востребованы. Первые почки, созданные на биопринтере, не обязательно должны выглядеть и функционировать так же, как их природные аналоги. Главное, чтобы они очищали кровь от продуктов обмена.

Регенеративная основа и кости

Еще одна группа исследований, преследующая долговременную цель получения человеческих органов “на заказ”, создала биоплоттер Envisiontec Bioplotter. Как и NovoGen MMX компании Organovo, этот биоплоттер выводит биочернильные тканевые сфероиды и вспомогательные материалы, включающие поддерживающий гидрогель, коллаген, факторы роста. Помимо этого Envisontec также может печатать более широкий спектр биоматериалов – биоразлагаемые полимеры и биокерамику, которая может быть использована для поддержки и придания формы искусственным органам. Эти материалы, созданные на биопринтере, могут быть использованы даже в качестве заменителя костей.

Команда под руководством Джереми Мао в лаборатории тканевой инженерии и регенеративной медицины Колумбийского университета (Tissue Engineering and Regenerative Medicine Lab) работает над применением биопринтеров для замены зубов и костей. В настоящее время экспериментально создана решетчатая 3D-конструкция в форме резца и имплантирована в челюстную кость крысы. Эта структура состоит из микроканалов, которые наполнены веществами, стимулирующими развитие стволовых клеток. Всего через девять недель после имплантации они вызвали рост периодонтальной связки и образование альвеолярного отростка. Со временем эти исследования могут дать людям возможность иметь новые зубы, созданные на биопринтере, или получить их путем стимуляции организма к образованию собственных новых зубов.

При проведении другого эксперимента команда Мао имплантировала решетчатую структуру, созданную на биопринтере, в район бедренной кости нескольким кроликам. И снова эта конструкция была насыщена факторами роста. Как сообщил медицинский журнал The Lancet, в течение четырех месяцев у всех кроликов образовались новые, полностью функциональные суставы вокруг этой решетки. Некоторые кролики даже начали передвигаться и переносить вес на свои новые суставы уже через несколько недель после операции. В следующем десятилетии люди, нуждающиеся в эндопротезировании, уже смогут получить новые тазобедренные суставы и другие кости, сзданные с помощью технологии биопечати. Команда из Университета штата Вашингтон недавно сообщила о результатах четырех лет работы с использованием 3D-принтера для создания костеподобного материала, который в будущем может быть использован для восстановления поврежденных человеческих костей.

Биопечать In Situ

Вышеупомянутый научный прогресс со временем позволит получать в лабораториях органы с помощью биопринтеров из собственных клеток пациента, что может привести к революции в медицине. Тем не менее, другие исследователи пытались пойти дальше и разработать методы, позволяющие распечатать новую ткань или орган непосредственно на теле. В следующем десятилетии врачи получат возможность просканировать раны и нанести слои клеток для их быстрого заживления.

В настоящее время команда исследователей биопечати под руководством Энтони Алата (Anthony Alata) в Wake Forrest School of Medicine разработала принтер, создающий кожу. В начальных экспериментах они взяли 3D-сканы тестовых травм, нанесенных мышам, и использовали эти данные для управления головкой биопринтера, которая распыляет клетки кожи, коагулянты и коллаген на рану. Результаты этого эксперимента оказались также весьма многообещающими: заживление ран проходило всего за две – три недели (примерно пять-шесть недель – в контрольной группе).

Частичное финансирование проекта создания кожи с помощью биопринтера осуществляется американскими военными, которые добиваются развития биопечати in situ, чтобы лечить раны прямо в боевых условиях. В настоящее время работа все еще находится в фазе доклинических испытаний. Алата развивает технологии, экспериментируя на свиньях. Тем не менее, испытания на людях, пострадавших от ожогов, могут быть осуществлены в течение ближайших пяти лет.

Потенциал для использования биопринтеров для восстановления поврежденных тканей и органов нашего тела in situ просто колоссальный. Возможно уже в следующем десятилетии станет возможным создание роботизированной хирургической руки с наконечником в виде головки биопринтера, которая будет проникать в тело и осуществлять восстановление повреждений на клеточном уровне. Пациентам по-прежнему нужно будет отдыхать и восстанавливать силы в течение нескольких дней, пока созданный биопринтером материал полностью станет зрелой живой тканью. Тем не менее, большинство пациентов в перспективе смогут реабилитироваться после очень серьезной операции менее, чем за неделю.

Использование в косметологии

Также как и восстановление внутренних органов биопринтером через небольшой надрез на теле пациента, применение этой технологии имеет большие перспективы и в области косметологии. Например, моут быть созданы биопринтеры для печати человеческих лиц. Они будут испарять существующие ткани и одновременно заменять их новыми клетками, создавая новое лицо по желанию самого пациента.

Даже упоминание о том, что клетки вашего лица медленно выжигают лазером и печатают на заказ наводит на мысли об ужасной пытке, которую никто никогда не захочет перенести. Однако, многие люди сегодня идут под нож, чтобы достичь гораздо меньшего косметического эффекта. Когда технология станет доступной для создания на биопринтере новых лиц, не говоря уже о принтерах, которые смогут напечатать новые мышцы без затрат времени на их тренировку, очень вероятно, что она будет востребована на рынке косметических услуг.

Материал подготовлен редакцией сайта Техножизнь на основе информации, полученной из открытых источников. Источники: www.organovo.com, www.envisiontec.de. Любое использование интернет-изданиями данного материала возможно только с указанием активной ссылки на сайт Техножизнь

UPD : Владельцы лаборатории - Инвитро - теперь есть на Хабре. Занёс в их корпоративный блог. С вопросами можно обращаться к ним напрямую.

Это из новой лаборатории 3D-печати органов. Спереди внушительный микроскоп, дальше видно двух медицинских инженеров за AutoCAD – делают макет площадки для формирования тканевых сфероидов.

Тут недавно открылась лаборатория 3D-биопринтинга органов (проект Инвитро). Вокруг неё творится какая-то лютая феерия непонимания того, что именно делается. В общем, хоть я и не микробиолог, но мне стало интересно. Я пробился до разработчика - В.А. Миронова. Именно он изобрёл технологию печати органов и запатентовал это в США, участвовал в разработке уже трех модификаций биопринтеров, и именно он «главный по науке» в новой лаборатории в Москве:


В.А. Миронов (M.D., Ph.D., профессор с 20-летним опытом в микробиологии, в частности, на границе с IT) - в процессе полуторачасового объяснения мне сути технологии изрисовал кучу бумаги.

В двух словах о печати он рассказать не смог, потому что сначала надо понять некоторую историю вопроса. Например, почему пришлось отбросить светлую идею растить эмбриона без головы в суррогатной матери, а затем вынимать из него почку и помещать её в биораставор для ускоренного созревания.

А пока главное. Не торопитесь пить всё что горит: до новой печени ещё очень далеко . Поехали.

Эволюция методов

Итак, сначала была генная терапия : пациенту вводились соответствующие комплексы. Выделялись определённые клетки, в них вводились нужные гены, затем клетки размещались в организме человека. Не хватало инсулина – вот ген, который продуцирует его создание. Берём клеточный комплекс, модифицируем, вкалываем пациенту. Идея – отличная, правда с одним коренным недостатком: пациент вылечивается сразу, и покупать после операции ничего не надо. То есть догадайтесь, кому это было поперёк горла. Дело шло сложно, а потом один из пациентов умер – и началась характерная для США волна судебных исков и запретов, в результате чего исследования пришлось свернуть. В итоге – метод есть, но толком не оттестирован.

Следующим трендом стала клеточная терапия - использование эмбриональных стволовых клеток. Метод отличный: берутся «универсальные» клетки, которые могут быть развиты до любых необходимых пациенту. Проблема в том, что чтобы их где-то получить, нужен эмбрион. Эмбрион в процессе получения клеток, очевидно, расходуется. А это уже морально-этическая проблема, которая вызвала запрет использования таких клеток.

Дальше - тканевая инженерия – это когда вы берёте основу, кладёте на неё клетки, засовываете всё это в биореактор, на выходе получаете результат (орган), который нужен пациенту. Как протез, только живой. Вот здесь важный момент: основное отличие от протеза в том, что протез изначально из неорганики, и вряд ли когда-нибудь встроится в организм «как родной». Деревянную ногу не почешешь.

Методы тканевой инженерии бывают каркасные – когда используется выщелоченный (обесклеченный) трупный орган, который затем «заселяется» клетками пациента. Другие научные группы пробовали работать со свиными белковыми каркасами органов (доноры-люди не нужны, зато во весь рост встаёт иммуносовместимость). Каркасы бывают искусственные – из разных материалов, некоторые научные группы экспериментировали даже с сахаром.

Сам Миронов практикует бескаркасную технологию (с использованием гидрогеля в качестве основы). В его методе основа-полимер быстро деградирует и в итоге остаётся только клеточный материал. Проще говоря, сначала вставляется каркас из неограники с размещёнными клетками, а затем каркас «растворяется», и его функции берут на себя сами клетки уже подросшего органа. Для каркасов используется тот же материал, что для хирургических швов: он легко и просто деградирует в организме человека.

Тут главный вопрос – почему нужна именно 3D-печать. Чтобы это понять, давайте закопаемся ещё чуть глубже в имеющиеся методы тканевой инженерии.

Приближаемся к цели

Вообще, идея вставлять в человека заранее выращенный органический орган – отличная. Посмотрим на три варианта развития технологии:
  1. Вы берёте каркас из неорганики, засеиваете его клетками – и получаете готовый орган . Метод грубый, но работающий. Именно про него речь в большинстве тех случаев, когда говорят «мы напечатали орган». Проблема в том, что где-то нужно взять «стройматериал» - сами клетки. А если они есть, то глупо использовать какой-то внешний каркас, когда есть возможность просто собрать орган из них. Но самая болезненная проблема – неполная эндотелизация. Например, для бронхов, сделанных так, уровень - около 70%. Это значит, что поверхностные сосуды тромбогенны – вылечивая пациента, вы сразу же привносите ему новую болезнь. Дальше он должен жить на гепарине или других препаратах, либо ждать, когда образуется тромб и эмболия. А здесь уже с нетерпением ждут юристы США, которые готовы отыграть по старому сценарию. И проблема эндотелизации пока не решена. Возможный вариант – выделение клеток-предшественников костного мозга с помощью мобилизации специальными препаратами и хомингом на органе, но это пока очень далёкая от практики фантазия.
  2. Второй метод крайне оригинален и очень радует своей циничностью . Берём клетку (фибробласт) пациента, добавляем 4 гена. Кладём полученную клетку в бластоцисту (зародыша животного) и начинаем выращивать зверушку. Получается, например, свинья с человеческой поджелудочной железой – так называемая химера. Орган полностью «родной», только вся инфраструктура вокруг – кровеносные сосуды, ткани и так далее – от свиньи. А они будут отторгаться. Но ничего. Мы берём свинью, вырезаем нужный орган (свинья при этом полностью расходуется), а затем убираем с помощью специальной обработки все свиные ткани – получается как бы органический каркас органа, который можно использовать для выращивания нового. Некоторые исследователи пошли дальше и предложили следующий лафхак: давайте заменим свинью на суррогатную мать. Тут как: кроме 4 генов в клетку добавляется ещё один, отвечающий за ацефалию (отсутствие головы). Нанимается суррогатная мать, которая вынашивает нашего общего друга-эмбриона. Он развивается без головы, у ацефалов это хорошо получается. Затем – УЗИ, выяснение, что ребёнок получается неполноценный, и юридически-разрешённый аборт. Нет головы – нет человека, значит, никого мы не убивали. И тут – раз! - у нас тут появился теоретически легальный биоматериал с неразвитым органами пациента. Быстро имплантируем их! Из очевидных минусов – ну, кроме моральной стороны – организационная сложность и возможные юридические осложнения в будущем.
  3. И, наконец, есть третий метод, про который и идёт речь . Он же самый современный - трёхмерная печать органов. И именно им занимаются в новой лаборатории. Смысл такой: не нужны неорганические каркасы (клетки сами себя прекрасно держат), не нужно у кого-то брать органы. Пациент отдаёт немного своей жировой ткани (есть у каждого, в ходе экспериментов жаловались только тощие японцы), из неё методом последовательной обработки клеток получаются необходимые конструкционные элементы. Создаётся трёхмерная модель органа, конвертируется в CAD-файл, затем этот отдаётся 3D-принтеру, который умеет печатать нашими клетками и понимает в какую точку трехмерного пространства ему нужно «уложить» конкретный тип клетки. На выходе – тканевый конструкт, который надо поместить в специальную среду, пока не начались проблемы с гипоксией. В биорекаторе тканевый конструкт «созревает». Потом орган можно «трансплантировать» пациенту.
Очевидные сложные места метода следующие:
  1. Получение модели органа. Нужно где-то взять схему. Это довольно просто.
  2. Получение самих клеток. Очевидно, нам нужен материал для печати органа.
  3. Сборка принтера, чтобы клетками можно было печатать (куча проблем с образованием структуры органа).
  4. Гипоксия (отсутствие кислорода) во время создания органа.
  5. Реализации питания органа и его созревание до готовности.
Итак, 3D-принтер – это только кусок линии по фабрикации органов: его нужно обеспечить чертежом, материалом, а затем полученную модель органа из клеток ещё вырастить. Теперь давайте посмотрим по шагам, как все описанные выше задачи решаются.

Модель органа

Итак, берётся CAD-файл (сейчас - формат stl) с моделью органа. Проще всего получить модель, сделав трёхмерное сканирование самого пациента, а затем доработав данные руками. Сейчас текущие конструкты моделируются в AutoCAD.


Видно моделирование. 3D-структура как у обычной детали – только вместо пластика будут тканевые сфероиды.

Материал

Берётся материал – тканевые сфероиды, которыми будет идти запечатка. В качестве основы используется гидрогель, выполняющий функции соединительной структуры. Затем 3D-принтер печатает орган из этих вот тканевых сфероидов.


Первый опыт, подтверждающий, что из кусочков можно собрать целый орган: учёные разрезали на фрагменты сердце цыплёнка и срастили заново. Успешно.

Теперь вопрос – где взять клетки для этого материала. Лучшие – человеческие эмбиональные стволовые, из них можно сделать клетки для любой ткани последовательной дифференцировкой. Но их трогать, как мы знаем, нельзя. Зато можно брать iPS – индуцированные плюрипотентные стволовые клетки. Их можно сделать из костного мозга, пульпы зуба или обычной жировой ткани пациента – и их производят различные компании по всему миру.

Схема такая: человек обращается в клинику, делает липосакцию, жировая ткань замораживается и кладётся в репозиторий. При необходимости – достаётся, из неё делаются нужные клетки (ATDSC, один такой комплекс есть в России) и затем дифференцируются по назначению. Например, из фибробластов можно сделать iPS, из них – почечный эпителий, а дальше – функциональный эпителий.

Машины для автоматического получения таких клеток производятся General Electric, например.


Центрифуга. Первый этап отделения материала из жировой ткани.

Из этих клеток формируются шарики в специальных микроуглублениях на твёрдом материале. В углубление на молде помещается клеточная суспензия, затем клетки сращиваются, и образуется шарик. Точнее – не очень ровный сфероид.

Обработка конструкционных блоков

Следующая проблема – клетки в картдидже горят желанием срастись. Тканевые сфероиды должны быть изолированы друг от друга, иначе они начнут срастаться раньше срока. Их нужно инкапсулировать, и для этого используется гиалуроновая кислота, получаемая из сыворотки крови. Её надо совсем мало – просто один тончайший слой. Она также быстро «уходит» после печати.

Печать

Головка 3D-принтера имеет три экструдера: две форсунки с гелем и устройство, выдающее тканевые сфероиды. В первой форсунке с гелем – тромбин, во второй – фибриноген. Оба геля относительно стабильны, пока не соприкасаются. Но когда белок фибриноген расщепляется тромбином, образуется фибрин-мономер. Именно им как бетоном скрепляются тканевые сфероиды. При глубине слоя, соответствующей диаметру сфероида, можно последовательно наносить материал ряд за рядом – сделали слой, закрепили, перешли к следующему. Затем фибрин легко деградирует в среде и вымывается при перфузии, и остаётся только нужная ткань.


Вот так будут печататься трубочки

Принтер печатает слоями по 250 микрометров: это баланс между оптимальным размером блока и риском гипоксии в сфероиде. За полчаса можно напечатать тканево-инженерную конструкцию 10х10 сантиметров – но это ещё не орган, а тканево-инженерная конструкция, «сопля» на жаргоне. Чтобы конструкция стала органом, она должна жить, иметь чёткую форму, нести функции.


Микроскоп с огромным фокусным расстоянием смотрит на стеклянный куб с 3D-принтером.


Печатающая головка. Пока идут тесты комплекса на пластике. Принтер сейчас печатает расходный материал, пластиковые приспособления-молды для создания сфероидов. Параллельно идут тесты стерильного бокса для 3D-принтера при работающем электронном устройстве.

Постобработка

Главный вопрос – это то, что клеткам, вообще-то, не плохо бы иметь доступ к кислороду и питательным веществам . Иначе они начинают, грубо говоря, гнить. Когда орган тонкий, проблем нет, но уже с пары миллиметров это важно. Правда, у слона, например, есть хрящи до 5 миллиметров – но они вмонтированы там, где создаётся большое давление из-за массы остального слона. Так вот, чтобы напечатанный орган не испортился в процессе фабрикации, нужна микроциркуляция. Это делается печатью настоящих сосудов и капилляров, плюс с помощью тончайших перфузионных отверстий, проделываемых неорганическими инструментами (грубо говоря, конструкционные блоки поступают на полимерном «шампуре», который потом вынимается).


Уплотнение ткани


Тканевое объединение нескольких типов клеток без смешения

Будущий орган помещается в биореактор. Это, сильно упрощая, банка с контролируемой средой, в которой на входы и выходы органа подаются нужные вещества, плюс обеспечивается ускоренное созревание за счёт воздействия факторами роста.

Вот что интересно - архитектура органа обычно похожа на привычный по ООП инкапсулированный объект – артерия входа, вена выхода – и куча функций внутри. Предполагается, что биореактор позволит обеспечивать нужный вход и выход. Но это пока теория, собрать ещё не удалось ни одного. Но проект отработан до стадии «можно собирать прототип».


Висело в лаборатории. Видно первый этап: получение базовых элементов, второй – 3D-принтер с тремя экструдерами, третий – уход от прототипа к промышленной модели, затем испытания на животных, затем выход на IPO и установка людям.


Линия целиком - клеточный сортер, фабрикатор тканевых сфероидов, принтер, перфузионная установка

Рынки

Теперь кому всё это нужно на стадии, пока нет самих органов.

Первые же крупные клиенты – военные . Собственно, как не трудно догадаться, DARPA ходит в гости ко всем учёным, занимающимся такой темой. У них два применения – испытательное (много что нельзя испытывать на живых людях, а хочется – отдельный орган был бы очень кстати) и лечебное. Например, бойцу демократии отрывает руку, а до госпиталя ползти сутки. Хорошо бы закрыть дыру, снять боль, дать ему возможность стрелять ещё 5 часов, а затем на своих двоих прийти к медсестре. В теории возможны либо роботы, которые соберут всё это по месту, либо заплатки из человеческих тканей, которые уже сейчас всерьёз думают ставить на ожоги.

Второй клиент – фарма . Там лекарства испытываются по 15 лет до выхода на рынок. Как шутят американцы, проще убить коллегу, чем мышку. На мышку надо собрать кучу документов в руку толщиной. Сертифицированные мышки получаются в результате очень дорогие. Да и результаты по зверьку отличаются от человеческих. Существующие модели испытаний на плоских клеточных моделях и на животных не достаточно ревалентны. В лаборатории мне сказали, что примерно 7% новых лекарственных формул в мире не доходят до клинических испытаний из-за нефротоксичности, выявленной на стадии преклинических испытаний. Из тех, что дошли, около трети имеют проблемы с токсичностью. Именно поэтому, кстати, одна из первых задач - проверка функциональности нефронов, сделанных в лаборатории. Ткани и органы с принтера будут существенно ускорять разработку лекарств, а это огромные деньги.

Третий клиент – госпитали. Рынок трансплантации почек с США, например – 25 миллиардов долларов. Сначала предполагается просто продавать 3D-принтеры в больницы, чтобы пациент мог получить что нужно. Следующий (теоретический) шаг – создание комплексов для печати органов прямо внутри пациента. Дело в том, что миниатюрную печатающую головку внутрь больного доставить часто намного проще, чем крупный орган. Но это ещё пока мечты, хотя нужные роботы существуют.


Вот примерно так оно должно работать

Да, здесь есть ещё одна важная тема: параллельно ведутся исследования по управлению тканевыми сфероидами за счёт магнитной левитации. Первые опыты были простые – в ткань засовывались железные «наноопилки», и сфероиды действительно летали как надо в магнином поле и доставлялись по месту. Но страдала дифференцировка. С опилками сложно выполнять нужные функции. Следующий логичный шаг – металл в инкапсулирующем слое. Но ещё круче – микроскафолды с магнитными частицами. Эти скафолды охватывают сфероид и ещё могут выступать в роли каркаса-соединителя, встающего сразу по месту, что даёт огромный простор для оперативной печати органов.

Одной из самых успешных областей медицины для 3D печати, пожалуй, можно назвать протезирование. Ведь при нынешних возможностях, люди стали получать разительно более дешевые и в то же время более качественные протезы практически всех костей в человеческом организме.

Кроме этого, в будущем, нас наверняка ждет колоссальный прорыв в трансплантологии. Над этим прорывом работает целая отрасль, именуемая 3D-биопечатью. Суть биопечати в том, чтобы в буквальном смысле изготавливать человеческие органы на специально разработанных 3D принтерах. Звучит такая перспектива, скажем прямо, как нечто из научной фантастики. Однако уже сегодня в этой сфере есть немало побед. Так, например, нам известно, что в ряду достижений ученых числится успешно вживленная в тело мыши распечатанная печень! По словам экспертов, в перспективе примерно 10-ти лет, мы сможем проводить аналогичные операции, но уже с людьми.

Что же до людей, которые как известный всем Фома не могут поверить до тех пор, пока не пощупают, можно привести в пример стоматологию. Уже сегодня, мы имеем повсеместное внедрение 3D печати в эту область медицины. Мудрые стоматологи по всему миру уже смекнули, что зубные протезы, распечатанные на 3D принтере, проще в изготовлении и имеют более точные параметры, нежели протезы произведенные вручную.

Словом, количество и качество достижений и перспектив, которые привнесла 3D печать в медицину, дает нам полное право говорить о том, что аддитивное производство - это новая веха в научно-технологической жизни человечества, ведь не каждая технология может похвастаться тем, что она спасает жизни людей.

Печать органов на 3d принтере открывает новые возможности

Особого внимания заслуживают возможности в сфере протезирования и создания экзоскелетов. Эти технологии имеют ряд неоспоримых преимуществ:
  1. Изготовление занимает совсем немного времени благодаря специальным программам (например, Mimics, SurgiCase, SimPlant или других, используемых в медицине).
  2. Стоимость на несколько порядков ниже, чем при использовании обычных технологий.
  3. Учет индивидуальных характеристик и потребностей конкретного пациента обеспечивает комфорт, а значит, больше не нужно «подтачивать» уникальную ткань под стандартную заготовку.

Увы, на современном этапе напечатанные органы не воссоздают поврежденный оригинал, но способны функционально его заменить. Например, искусственные сердечные клапаны, суставы, зубы, слуховые аппараты и элементы конечностей с успехом выполняют функции имплантатов.

Последним же ноу-хау является печать органов на 3d принтере, при которой используется биоматериал вместо пластика или смол.

На данный момент разработаны две методики: печатать органы живыми клетками, заполняя окружающее пространство специальным коллагеновым гелем, или же помещать клетки на поверхности (или внутри) напечатанной принтером пластиковой формы. Первый способ позволил вырастить ткань кожи, второй - живую печень и почку, которые планируют использовать для экспериментов.

По подсчетам ученых, до времени, когда можно будет свободно распечатывать органы на 3d принтере, осталось лет 10.

После 10 лет разработок команда биолога Энтони Аталы представила публике Cистему печати встроенной ткани и органов. После окончания всех анализов эти 3D-бионапечатанные структуры будут использоваться для замены поврежденной, больной или мертвой ткани пациентов. А так как они спроектированы на компьютере, то эти заменители будут в точности соответствовать нуждам каждого отдельного пациента. Детали технологии освещены в статье, напечатанной в журнале Nature Biotechnology.

Биопринтеры работают также как обычные 3D-принтеры, но вместо пластика или металлов используют специальные биоматериалы, которые по характеристикам напоминают функционирующую живую ткань. Но до сих пор пор биопринтеры не могли печатать ткани нужных размеров или прочности. Материалы получались слишком слабые и структурно нестабильные для хирургической трансплантации. Также они не могли печатать кровеносные сосуды, а без них новые клетки не могли получать кислород и питательные вещества.

Новый биопринтер преодолел все эти недостатки. Биоразрушаемый полимерный материал используется для создания формы ткани, а гель на основе воды доставляет клетки в структуру (гель не токсичен по отношению к клеткам) Временная внешняя структура помогает поддерживать форму объекта во время процесса печати. А чтобы справиться с ограничениями по размеру, исследователи внедрили в объект специальные микроканалы, которые позволяют доставлять питательные вещества и кислород ко всем клеткам внутри структуры. «По сути мы воссоздали капилляры с помощью этих микроканалов», — %D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%B8%D1%82%20%20%D0%90%D1%82%D0%B0%D0%BB%D0%B0.

%0A

%D0%94%D0%BB%D1%8F%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B8%20%D1%81%D0%B2%D0%B5%D0%B6%D0%B5%D0%BD%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D1%85%20%D0%B1%D0%B8%D0%BE%D1%87%D0%B0%D1%81%D1%82%D0%B5%D0%B9%20%D1%83%D1%87%D0%B5%D0%BD%D1%8B%D0%B5%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D0%BB%D0%B8%20%D1%80%D1%8F%D0%B4%20%D1%8D%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D0%B2%20%D0%BD%D0%B0%20%D0%B6%D0%B8%D0%B2%D1%8B%D1%85%20%D0%B6%D0%B8%D0%B2%D0%BE%D1%82%D0%BD%D1%8B%D1%85.%20%D0%92%D0%BD%D0%B5%D1%88%D0%BD%D0%B8%D0%B5%20%D1%83%D1%88%D0%B8,%20%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BE%D0%BC%20%D1%81%20%D1%87%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5,%20%D0%B1%D1%8B%D0%BB%D0%B8%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D1%8B%20%D0%BF%D0%BE%D0%B4%20%D0%BA%D0%BE%D0%B6%D1%83%20%D0%BC%D1%8B%D1%88%D0%B8.%20%D0%A7%D0%B5%D1%80%D0%B5%D0%B7%20%D0%B4%D0%B2%D0%B0%20%D0%BC%D0%B5%D1%81%D1%8F%D1%86%D0%B0%20%D1%83%D1%88%D0%B8%20%D0%BF%D0%BE%E2%80%91%D0%BF%D1%80%D0%B5%D0%B6%D0%BD%D0%B5%D0%BC%D1%83%20%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B8%D0%BB%D0%B8%20%D1%84%D0%BE%D1%80%D0%BC%D1%83,%20%D0%B0%20%D1%82%D0%B0%D0%BA%D0%B6%D0%B5%20%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%D1%81%D1%8C%20%D0%BA%D1%80%D0%BE%D0%B2%D0%B5%D0%BD%D0%BE%D1%81%D0%BD%D1%8B%D0%B5%20%D1%81%D0%BE%D1%81%D1%83%D0%B4%D1%8B%20%D0%B8%20%D1%85%D1%80%D1%8F%D1%89%D0%B5%D0%B2%D0%B0%D1%8F%20%D1%82%D0%BA%D0%B0%D0%BD%D1%8C.%20%D0%9D%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D0%BC%D1%83%D1%81%D0%BA%D1%83%D0%BB%D1%8B%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B2%20%D0%BA%D1%80%D1%8B%D1%81,%20%D0%B8,%20%D0%BA%D0%B0%D0%BA%20%D0%B8%20%D0%B2%20%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B5%20%D1%81%20%D1%83%D1%88%D0%B0%D0%BC%D0%B8,%20%D1%8D%D1%82%D0%B8%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B8%D0%BB%D0%B8%20%D1%81%D0%B2%D0%BE%D1%8E%20%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D1%83.

%0A

%D0%A1%D1%82%D0%B2%D0%BE%D0%BB%D0%BE%D0%B2%D1%8B%D0%B5%20%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B8%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B4%D0%BB%D1%8F%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%BD%D0%B8%D1%8F%20%D1%84%D1%80%D0%B0%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D0%B2%20%D0%BA%D0%BE%D1%81%D1%82%D0%B5%D0%B9%20%D1%87%D0%B5%D0%BB%D1%8E%D1%81%D1%82%D0%B8,%20%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D1%8B%D0%B5%20%D1%82%D0%B0%D0%BA%D0%B6%D0%B5%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B2%20%D0%BA%D1%80%D1%8B%D1%81.%20%D0%A1%D0%BF%D1%83%D1%81%D1%82%D1%8F%20%D0%BF%D1%8F%D1%82%D1%8C%20%D0%BC%D0%B5%D1%81%D1%8F%D1%86%D0%B5%D0%B2%20%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D1%8B%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%BB%D0%B8%20%D0%BA%D1%80%D0%BE%D0%B2%D0%BE%D1%81%D0%BD%D0%B0%D0%B1%D0%B6%D0%B0%D0%B5%D0%BC%D1%83%D1%8E%20%D0%BA%D0%BE%D1%81%D1%82%D0%BD%D1%83%D1%8E%20%D1%82%D0%BA%D0%B0%D0%BD%D1%8C.

%0A

%D0%90%D1%82%D0%B0%D0%BB%D0%B0%20%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%B8%D1%82,%20%D1%87%D1%82%D0%BE%20%D1%82%D0%B0%D0%BA%D0%B8%D0%B5%20%D0%BD%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D0%B8%D0%BC%D0%B5%D1%8E%D1%82%20%D0%BD%D1%83%D0%B6%D0%BD%D1%8B%D0%B9%20%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80,%20%D0%BF%D1%80%D0%BE%D1%87%D0%BD%D0%BE%D1%81%D1%82%D1%8C%20%D0%B8%20%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C%20%D0%B4%D0%BB%D1%8F%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F%20%D0%B8%D1%85%20%D0%B2%20%D1%87%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%BC%20%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D0%B8%D0%B7%D0%BC%D0%B5,%20%D0%BF%D1%80%D0%B8%D1%87%D0%B5%D0%BC%20%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%20%D0%BC%D0%BE%D0%B6%D0%B5%D1%82%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D1%82%D1%8C%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D0%B1%D1%83%D0%BA%D0%B2%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%20%D0%BB%D1%8E%D0%B1%D1%8B%D1%85%20%D1%84%D0%BE%D1%80%D0%BC.%20%D0%A1%D0%B5%D0%B9%D1%87%D0%B0%D1%81%20%D1%83%D1%87%D0%B5%D0%BD%D1%8B%D0%B5%20%D0%B7%D0%B0%D0%BD%D0%B8%D0%BC%D0%B0%D1%8E%D1%82%D1%81%D1%8F%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%BE%D0%B9%20%D0%B1%D0%B5%D0%B7%D0%BE%D0%BF%D0%B0%D1%81%D0%BD%D0%BE%D1%81%D1%82%D0%B8%20%D1%81%D0%B2%D0%BE%D0%B5%D0%B3%D0%BE%20%D0%B8%D0%B7%D0%BE%D0%B1%D1%80%D0%B5%D1%82%D0%B5%D0%BD%D0%B8%D1%8F,%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D1%87%D0%B5%D0%B3%D0%BE%20%D0%BC%D0%BE%D0%B6%D0%BD%D0%BE%20%D0%B1%D1%83%D0%B4%D0%B5%D1%82%20%D0%BF%D0%B5%D1%80%D0%B5%D1%85%D0%BE%D0%B4%D0%B8%D1%82%D1%8C%20%D0%BA%20%D0%B8%D1%81%D0%BF%D1%8B%D1%82%D0%B0%D0%BD%D0%B8%D1%8F%D0%BC%20%D0%BD%D0%B0%20%D0%BB%D1%8E%D0%B4%D1%8F%D1%85.">